1-(1-naphthalenyl)-3-[[2-(2-nitrophenoxy)-1-oxoethyl]amino]urea, often referred to by its abbreviated name **NPU**, is a compound with potential applications in **cancer research**. Here's why:
**Mechanism of Action:**
NPU is a **selective inhibitor** of an enzyme called **HDAC6**. HDAC6 is a histone deacetylase that plays a role in various cellular processes, including **cell survival, proliferation, and migration**.
* **Inhibition of HDAC6** leads to an increase in the acetylation of tubulin, a protein involved in microtubule formation.
* This **disrupts the microtubule network**, which is essential for cell division and movement.
**Potential Therapeutic Applications:**
* **Cancer Treatment:** By inhibiting HDAC6 and disrupting microtubule formation, NPU can induce **cell death** in cancer cells.
* **Other Applications:** NPU is being investigated for its potential in treating other diseases like **neurodegenerative disorders** and **inflammation**.
**Importance for Research:**
NPU is a valuable tool for researchers studying the role of HDAC6 in various cellular processes. It has enabled scientists to:
* **Investigate the role of HDAC6 in cancer progression:** NPU has helped uncover the importance of HDAC6 as a target for cancer therapy.
* **Develop novel anti-cancer drugs:** NPU has served as a lead compound in the development of more potent and selective HDAC6 inhibitors for clinical trials.
* **Explore the therapeutic potential of HDAC6 inhibition:** NPU's success has paved the way for exploring the therapeutic potential of inhibiting HDAC6 in various diseases.
**Note:** While NPU shows promising potential, it is still in the early stages of research. More studies are needed to fully understand its efficacy and safety in humans.
ID Source | ID |
---|---|
PubMed CID | 3577242 |
CHEMBL ID | 1586409 |
CHEBI ID | 121581 |
Synonym |
---|
HMS2606C06 |
smr000227408 |
2-({2-nitrophenoxy}acetyl)-n-(1-naphthyl)hydrazinecarboxamide |
MLS000699743 |
n-(naphthalen-1-yl)-2-[(2-nitrophenoxy)acetyl]hydrazinecarboxamide |
STK452218 |
CHEBI:121581 |
AKOS003260020 |
1-naphthalen-1-yl-3-[[2-(2-nitrophenoxy)acetyl]amino]urea |
CHEMBL1586409 |
1-(1-naphthalenyl)-3-[[2-(2-nitrophenoxy)-1-oxoethyl]amino]urea |
Q27210141 |
Class | Description |
---|---|
C-nitro compound | A nitro compound having the nitro group (-NO2) attached to a carbon atom. |
aromatic ether | Any ether in which the oxygen is attached to at least one aryl substituent. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, Beta-lactamase | Escherichia coli K-12 | Potency | 28.1838 | 0.0447 | 17.8581 | 100.0000 | AID485341 |
Chain A, JmjC domain-containing histone demethylation protein 3A | Homo sapiens (human) | Potency | 79.4328 | 0.6310 | 35.7641 | 100.0000 | AID504339 |
Chain A, 2-oxoglutarate Oxygenase | Homo sapiens (human) | Potency | 31.6228 | 0.1778 | 14.3909 | 39.8107 | AID2147 |
Chain A, Ferritin light chain | Equus caballus (horse) | Potency | 17.7828 | 5.6234 | 17.2929 | 31.6228 | AID485281 |
Nrf2 | Homo sapiens (human) | Potency | 14.1254 | 0.0920 | 8.2222 | 23.1093 | AID624171 |
glp-1 receptor, partial | Homo sapiens (human) | Potency | 7.0795 | 0.0184 | 6.8060 | 14.1254 | AID624417 |
phosphopantetheinyl transferase | Bacillus subtilis | Potency | 56.2341 | 0.1413 | 37.9142 | 100.0000 | AID1490 |
ATAD5 protein, partial | Homo sapiens (human) | Potency | 6.5104 | 0.0041 | 10.8903 | 31.5287 | AID504467 |
TDP1 protein | Homo sapiens (human) | Potency | 29.0929 | 0.0008 | 11.3822 | 44.6684 | AID686978; AID686979 |
Microtubule-associated protein tau | Homo sapiens (human) | Potency | 7.0795 | 0.1800 | 13.5574 | 39.8107 | AID1460 |
apical membrane antigen 1, AMA1 | Plasmodium falciparum 3D7 | Potency | 31.6228 | 0.7079 | 12.1943 | 39.8107 | AID720542 |
aldehyde dehydrogenase 1 family, member A1 | Homo sapiens (human) | Potency | 39.8107 | 0.0112 | 12.4002 | 100.0000 | AID1030 |
lysosomal alpha-glucosidase preproprotein | Homo sapiens (human) | Potency | 6.3096 | 0.0366 | 19.6376 | 50.1187 | AID2100 |
nuclear factor erythroid 2-related factor 2 isoform 2 | Homo sapiens (human) | Potency | 23.1093 | 0.0041 | 9.9848 | 25.9290 | AID504444 |
DNA polymerase iota isoform a (long) | Homo sapiens (human) | Potency | 0.6310 | 0.0501 | 27.0736 | 89.1251 | AID588590 |
muscleblind-like protein 1 isoform 1 | Homo sapiens (human) | Potency | 8.9125 | 0.0041 | 9.9625 | 28.1838 | AID2675 |
Guanine nucleotide-binding protein G | Homo sapiens (human) | Potency | 1.5849 | 1.9953 | 25.5327 | 50.1187 | AID624287 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
negative regulation of inflammatory response to antigenic stimulus | Guanine nucleotide-binding protein G | Homo sapiens (human) |
renal water homeostasis | Guanine nucleotide-binding protein G | Homo sapiens (human) |
G protein-coupled receptor signaling pathway | Guanine nucleotide-binding protein G | Homo sapiens (human) |
regulation of insulin secretion | Guanine nucleotide-binding protein G | Homo sapiens (human) |
cellular response to glucagon stimulus | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
G protein activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
adenylate cyclase activator activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
plasma membrane | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |